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Abstract The present paper investigates the load-frequency control (LFC) for improving power sys-
tem dynamic performance over a wide range of operating conditions. This study proposed design and
application of the neural network model predictive controller (NN-MPC) on two-area load frequency
power systems. Neural network model predictive control (NN-MPC) combines reliable prediction of
neural network with excellent performance of model predictive control using nonlinear Levenberg—
Marquardt optimization. The controller used the local power area error deviation as a feedback sig-

nal. To validate the effectiveness of the proposed controller, two-area power system is simulated over
a wide range of operating conditions and system parameters change. Further, the performance of the
proposed controller is compared with a fuzzy logic controller (FLC) through simulation studies.
Obtained results demonstrate the effectiveness and superiority of the proposed approach.
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1. Introduction

Large-scale power systems are normally composed of intercon-
nected subsystems. The connection between the control areas
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is done using tie lines. Each area has its own generator or mul-
tigenerators and it is responsible for its own load and sched-
uled interchanges with neighboring areas. Because of a given
power system loading is never constant and to ensure the qual-
ity of power supply, a load frequency controller is needed to
maintain the system frequency at the desired nominal value.
It is known that changes in real power affect mainly the system
frequency and the input mechanical power to generators is
used to control the frequency of the output electrical power.
In a deregulated power system, each control area contains dif-
ferent kinds of uncertainties and various disturbances due to
increased complexity, system modeling errors and changing
power system structure. A well designed and operated power
system should cope with changes in the load and with system
disturbances and it should provide acceptable high level of
power quality while maintaining both voltage and frequency
within tolerable limits [1-3].
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During the last decades, various control strategies for LFC
have been proposed [1-10]. This extensive research is due to
the fact that LFC constitutes an important function on power
system operation where the main objective is to regulate the
output power of each generator at prescribed levels while
keeping the frequency fluctuations within pre-defined limits.
Robust adaptive control schemes have been developed [4-7]
to deal with changes in system parametric under LFC strate-
gies. A different algorithm has been presented in [§] to improve
the performance of multi-area power systems. Viewing a
multi-area power system under LFC as a decentralized control
design for a multi-input multi-output system, it has been
shown in [9] that a group of local controllers with tuning
parameters can guarantee the overall system stability and per-
formance. The result reported in [1,2] demonstrates clearly the
importance of robustness and stability issues in LFC design. In
addition, several practical points have been addressed in [5,10]
which include recent technology used by vertically integrated
utilities, augmentation of filtered area control error with
LFC schemes and hybrid LFC that encompasses an indepen-
dent system operator and bilateral LFC.

The applications of artificial neural networks, genetic algo-
rithms, fuzzy logic and optimal control to LFC have been re-
ported in [3-10].

Predictive control is now widely used in industry and a
large number of implementation algorithms. Most of the con-
trol algorithms use an explicit process model to predict the fu-
ture behavior of a plant and because of this, the term model
predictive control (MPC) is often utilized [11-13]. The most
important advantage of the MPC technology comes from the
process model itself, which allows the controller to deal with
an exact replica of the real process dynamics, implying a much
better control quality. The inclusion of the constraints is the
feature that most clearly distinguishes MPC from other pro-
cess control techniques, leading to a tighter control and a more
reliable controller. Another important characteristic, which
contributes to the success of the MPC technology, is that the
MPC algorithms consider plant behavior over a future horizon
in time. Thus, the effects of both feedforward and feedback
disturbances can be anticipated and eliminated, which permits
the controller to drive the process output more closely to the
reference trajectory.

Several versions of MPC techniques are Model Algorithmic
Control (MAC) [14], Dynamic Matrix Control (DMC) [15],
and Internal Model Control (IMC) [16]. Although the above
techniques differ from each other in some details, they are fun-
damentally the same, because all of them are based on linear
process modelling.

The neural network model predictive control (NN-MPC) is
another typical and straightforward application of neural net-
works to nonlinear control. When a neural network is com-
bined with MPC approach, it is used as a forward process
model for the prediction of process output [17,18]. Neural
model predictive control has been applied on process control
as chemical [19] and industry [18] applications. But, applying
MPC on power system stability and control is still very slightly
[20].

The main objective of this study is to investigate the appli-
cation of neural model predictive controller on the load fre-
quency control and inter area tie-power control problem for
a multi-area power system. The system is modeled and the
NN-MPC is designed and applied on the system. A compari-

son between the proposed NN-MPC and a FLC is presented
at different conditions and evaluated. The feasibility and
effectiveness of the LFC together with the proposed neural
model predictive controller have been demonstrated through
computer simulations. Simulation results have proved that
the proposed controller can give better overall performance.
Simulation results show also that the NN-MPC gives promis-
ing results.

2. Two-area load-frequency control model

Fig. 1 shows a block diagram of the ith area of an n-area power
system. Because of small changes in the load are expected dur-
ing normal operation, a linearized area model can be used for
the load-frequency control. The following one area equivalent
model for the system is adopted.

The system investigated comprises an interconnection of
two areas load frequency control. The block diagram of two
areas load frequency control model is shown in Fig. 2. The
model equations of two areas load frequency control can be
written as follows [21]:
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where

Af; = the incremental frequency deviation for the ith area;
AP, = the incremental change in load demand for the ith
area;

AP, = the incremental change in tie-line power;

APg; = the incremental change in governor position for the
ith area;

AP7; = the incremental change in power generation level
for the ith area;

B; = the bias constant for the ith area;

Ts: = the governor time constant for the ith area;

Tr; = the turbine time constant for the ith area;

K,; = power system gain for the ith area;

T,; = power system time constant for the ith area;

T; = the synchronizing constant between the ith and jth
area;

R; = gain of speed droop feedback loop for the ith area;
ACE; = area control error of the ith area;

u; = control input of the ith area.

The two areas power system can be written in state-space form
as follows:

X = Ax+ Bu+o6d (8)
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Figure 1  Block diagram of the ith area power system.
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The target of the model-based predictive control is to pre- » Unknown

dict the future behaviour of the process over a certain horizon Function g
using the dynamic model and obtaining the control actions to >

minimize a certain criterion, generally [13]:
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k=1

J= Z (M(t+k) —
k=N

Signals M(k + 1), Y,(k + 1), U,k + t) are the t-step ahead
predictions of the process output, the reference trajectory
and the control input, respectively. The values Ny and N, are
the minimal and maximal prediction horizon of the controlled
output, and N,, is the prediction horizon of the control input.
The value of N, should cover the important part of the step re-
sponse curve. The use of the control horizon N, reduces the
computational load of the method. The parameter A represents
the weight of the control signal. At each sampling period only
the first control signal of the calculated sequence is applied to
the controlled process. At the next sampling time the proce-
dure is repeated. This is known as the receding horizon
concept.

The controller consists of the plant model and the optimi-
zation block. Eq. (9) is used in combination with the input
and output constraints:

Unin < U < Umax, l.=0,...,N2*l
Aumin < Aui < Aumaxa ian--'aNZ -1
Ymin <yi<.Vmatx’ izla"'7N2

The ability to handle constraints is one of the key properties of
MBPC and also causes its spread, use, and popularity in indus-
try. MBPC algorithms are reported to be very versatile and ro-
bust in process control applications.

4. Neural network predictive control

Neural networks have been applied very successfully in the iden-
tification and control of dynamic systems. The universal appro-
ximation capabilities of the multilayer perceptron (MLP) make
it a popular choice for modelling of nonlinear systems and for
implementing of nonlinear controllers. The use of a neural net-
work for process modelling is shown in Fig. 4. The unknown
function may correspond to a controlled system, and the neural
network is the identified plant model. Two-layer networks, with
sigmoid transfer functions in the hidden layer and linear transfer
functions in the output layer, are universal approximators.
The prediction error between the plant output and the neu-
ral network output is used as the neural network training sig-
nal. The neural network plant model uses previous inputs and

Nh = Predicted "7
i output
N;kirk i

A 4
\ Adsptation

Figure 4 Neural network as a function approximator.

previous plant outputs to predict future values of the plant
output. The structure of the neural network plant model is gi-
ven in Fig. 5, where u() is the system input, y,(¢) is the plant
output, y,,(¢) is the neural network model plant output, the
blocks labelled TDL are tapped delay lines that store previous
values of the input signal, /W"/ is the weight matrix from the
input j to the layer i. LW" is the weight matrix from the layer j
to the layer i.

This network can be trained off-line in batch mode, using
data collected from the operation of the plant. The procedure
for selecting the network parameters is called training the net-
work. The Levenberg—Marquardt (LM) algorithm is very effi-
cient for training. The LM algorithm is an iterative technique
that locates the minimum of a function that is expressed as the
sum of squares of nonlinear functions. It has become a stan-
dard technique for nonlinear least-squares problems and can
be thought of as a combination of steepest descent and the
Gauss—Newton method [22-25].

When the current solution is far from the correct one, the
algorithm behaves like a steepest descent method: slow, but
guaranteed to converge. When the current solution is close
to the correct solution, it becomes a Gauss—Newton method.

Let f be an assumed functional relation which maps a
parameter vector P € R” to an estimated measurement vector
X =f(p), x € R". An initial parameter estimate p, and a mea-
sured vector x are provided, and it is desired to find the vector
p that best satisfies the functional relation f, i.e. minimizes the
squared distance e”e with e = x — %. The basis of the LM algo-
rithm is a linear approximation to fin the neighbourhood of p.
For a small ||,/ a Taylor series expansion leads to the approx-
imation f{P + 6,) = f(P) + Jo, where J is the Jacobi matrix
%. Like all non-linear optimization methods, LM is iterative:
initiated at the starting point p,, the method produces a series
of vectors py,pas . - ., that converge towards a local minimizer p
for f. Hence, at each step, it is required to find the J,, that min-
imizes the quantity |le — J3,|. The sought &, is thus the solution
of a linear least-square problem: the minimum is attained when
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Figure 5  Structure of the neural network plant model.

Jé, — e is orthogonal to the column space of J. This leads to
JT(J5,, —e) = 0, which yields 6, as the solution of the normal
equations:

JTIs, =J"e (10)

The matrix J7J in the left hand side of Eq. (10) is the approx-
imate Hessian, i.e. an approximation to the matrix of second
order derivatives. The LM method actually solves a slight var-
iation of Eq. (10), known as the augmented normal equations
No, = JTe, here the off-diagonal elements of N are identical to
the corresponding elements of J7J and the diagonal elements
are given by N; = u + [J7J]; for some u > 0. The strategy
of altering the diagonal elements of J7.J is damping and y is re-
ferred to the damping term. If the updated parameter vector
p + 6, with 6, computed from Eq. (10) leads to a reduction
of the error e, the update is accepted and the process repeats
with a decreased damping term. Otherwise, the damping term
is increased, the augmented normal equations are solved again
and the process iterates until a value of 6, that decreases error
is found.

In LM, the damping term is adjusted at each iteration to as-
sure a reduction in the error e. The LM algorithm terminates
when at least one of the following conditions is met:

1. The magnitude of the gradient of ¢e, i.e. J7e in the right
hand side of Eq. (10), drops below a threshold €.

. The relative change in the magnitude of 6, drops below a
threshold e,.

. The error e”e drops below a threshold e;.

. A maximum number of iterations k,,,, is completed.

If a covariance matrix X for the measured vector x is avail-
able, the minimum is found by solving a weighted least squares
problem defined by the weighted normal equations:

I35, = J Ze (11)

Model predictive control using a neural network model for sin-
gle-input, single-output systems has been studied by a few
researchers and is outlined [26]. For multivariable systems, the
neural network MPC strategy was described using three fixed
MLP models [27]. The same strategy is used in our system using
two MLP models with an adaptive model as shown in Fig. 6.

M(t) uit) Yolt)
= Oplimizer _I—){ Plant I a >
e J 5. Fuzzy logic control
- NN d FLC operates in the same way as a human operator does. It per-
7|  model Tu(t) forms the same actions by adjusting the input signal looking at
only the system output. The fuzzy logic control approach
consists of three stages, namely fuzzification, fuzzy control rules
engine, and defuzzification as depicted in Fig. 7. To design the
Figure 6 Multivariable NN-MPC control strategy. fuzzy logic load frequency controller, the input signals are the
Fuzzy Logic Control
Reference T E
input E. WARK) | Fugy Control [0(4%) | & -~ outputs
5 »  Rule-Base > g, » P >
g g
=3

t

Figure 7  Three-stage of fuzzy logic controller.
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K(ACED Table 1 Fuzzy logic control rules (Af).
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LN LP LP LP MP MP SP Z
MN LP MP MP MP SP Z SN
SN LP MP  SP SP Z SN MN
“+ > V4 MP MP SP V4 SN MN MN
-1 065 .03 0 03 065 1 ACE (pw) SP MP SPZ SN SN MN LN
(a) MP SP V4 SN MN MN MN LN
LP Z SN MN MN LN LN LN

W(dACEY

0.3 0.65 1 dACE (o)

(b)
R(ACED

-1 065 03 0

" .1 06503 0 03 065 1 ACEx(pu)
(c)
K(ACE)

LP

SP MP

L)

1 065 03 0 03 065 1 dACE;(pu)
(d)

Figure 8 Membership functions. (a) Area one control error, (b)
variation in area one control error, (c) area two control error, and
(d) variation in area two control error.

area control error deviation at sampling time and its change in
both area one and area two. While, its output signal is the
change of control signal AU(k). Fig. 7 shows the fuzzy logic con-
trol system with the plant. While the fuzzy membership function
signal is described in Fig. 8, and fuzzy control rules are illus-
trated in Table 1. The membership function shapes of error
and derivative error and the controller outputs are chosen to
be identical with triangular function for fuzzy logic control.
However, this horizontal axis range takes different values be-
cause of optimizing controller.

6. Implementation scheme

The objective of this control is to regulate the terminal fre-
quency at the area output and minimize the deviation between

LN: large negative membership function; MN: medium negative;
SN: small negative; Z: zero; SP: small positive; MP: medium posi-
tive; LP: large positive.

the actual and reference area control error (4CE), the block
diagrams of LFC with the proposed NN-MPC and FLC are
shown in Figs. 9 and 10 respectively. The cost function of
Eq. (9) will have the following form for the proposed system:

N>
J=" (ACE(1 + k) — ACE et +k))’
k=N,
alt 2
+ ) (MAACR. (1 + k) (12)
k=1
where
AACR”,/ = ACR,.L,/([ + k) — ACR,.(,f(l‘ +k— 1)

the constraints are chosen such that, the area output frequency
and tie power are normalized to be 1, corresponds to output
frequency and tie power. Thus,

ACR,;y— e <u< ACR, s+ ¢

7. Digital simulation results

The controller using a neural network model to predict future
LFC responses and potential control signals is designed.
Then, an optimization algorithm related to Eq. (12) computes
the control signals that optimize future plant performance.
The neural network plant model was trained using the Leven-
berg—Marquardt algorithm. The training data were obtained
from the model of the LFC (1-7). The used model predictive
control method was based on the receding horizon technique.
The neural network model predicted the plant response over a
specified time horizon. The predictions were used by a numer-
ical optimization program to determine the control signal that
minimizes performance criterion over the specified horizon.
The controller was implemented using Matlab/Simulink with
the following constraints and parameters values:

N =[1 1], N,=[7 6], N,=[2 3]

and A=1[0.05 0.08]

The constraints on the states are chosen such that to guarantee
signals stay at physically reasonable values as follows:

Afi
Xmin < AfZ
AP”

g xmax
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where A comparison between the power system responses using the

fuzzy logic controller and the proposed NN-MPC are evalu-
—005 0.05 ated. The investigated system parameters are [28]:

fo =60 HZ, Rl = R2 =24 HZ/per unit MW, TG] = TGZ =

Xmin = | =005 ], Xmax = | 0.05 0.08s, Tr =Tr=03s, B, =B,=04MW/Hz, T, =

—0.03 0.03 T,, =20, a;; = —1; K,, =120; K, = 120; T1» = 0.545 MW.
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Fig. 11 displays the frequency deviation response of area-1
due to 0.05 p.u. load disturbance in area-1 of the two-area
power system with FLC and proposed NN-MPC. Fig. 12
shows the frequency deviation response of area-2 due to
0.05 p.u. load disturbance in area-1 of the two-area power sys-
tem with FLC and proposed NN-MPC. Fig. 13 shows the tie-
line power deviation response due to 0.05 p.u. load disturbance
in area-1 of the two-area power system with FLC and pro-
posed NN-MPC. Fig. 14 shows the frequency deviation
response of area-1 due to 0.05 p.u. load disturbance in area-2
of the two-area power system with FLC and proposed NN-
MPC at 30% increase in regulators R1 and R2. Also,
Fig. 15 depicts the frequency deviation response of area-2
due to 0.05 p.u. load disturbance in area-2 of the two-area
power system with FLC and proposed NN-MPC at 30% in-
crease in regulators R1 and R2. Fig. 15 depicts the tie-line
power deviation response due to 0.05 p.u. load disturbance
in area-2 of the two-area power system with FLC and pro-
posed NN-MPC at 30% increase in regulators R1 and R2.
The maximum over shoot (max. O. S.) and the settling time
(Ty) for the FLC with the proposed NN-MPC and FLC are
shown in Table 2.

003 T
002¢ -

001

devistionof Fl inp.u

0m

0
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Figure 11 Frequency deviation response of area-1 due to
0.05 p.u. load disturbance in area-1 of the two-area power system
with FLC and proposed NN-MPC.
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Figure 12 Frequency deviation response of area-2 due to
0.05 p.u. load disturbance in area-1 of the two-area power system
with FLC and proposed NN-MPC.
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Figure 13  Tie-line power deviation response due to 0.05 p.u.
load disturbance in area-1 of the two-area power system with FLC
and proposed NN-MPC.
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Figure 14 Frequency deviation response of area-1 due to
0.05 p.u. load disturbance in area-2 of the two-area power system
with FLC and proposed NN-MPC at 30% increase in regulators
R1 and R2.
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Figure 15 Frequency deviation response of area-2 due to
0.05 p.u. load disturbance in area-2 of the two-area power system
with and without fuzzy logic and proposed NN-MPC at 30%
increase in regulators R1 and R2.
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Table 2 The settling time and maximum over shoot calculation with FLC and NN-MPC.

5% Disturbance in area No. 1

5% Disturbance in area No. 2

NN-MPC FLC NN-MPC FLC

T (s) Max. O. S. (p.u.) T (s) Max. O. S. (p.u.) T (s) Max. O. S. (p.u.) T (s) Max. O. S. (p.u.)
Afi 2.5 0.01 16 0.024 2.5 0.01 8 0.019
Af> 3 0.018 13 0.006 3 0.013 6 0.028
APy 3 0.0008 15 0.013 3 0.0025 6 0.004

Ty is the the settling time in seconds.

o

NNMEFC -

deviation of the power in p.u
=,

i i i

o[- -
0 5 10 15 20 25 30 K. 40
Time (sec)

Figure 16 Tie-line power deviation response due to 0.05 p.u.
load disturbance in area-2 of the two-area power system with FLC
and proposed NN-MPC at 30% increase in regulators R1 and R2.

8. Discussions

The fuzzy rules matrix for fuzzy logic controller is developed,
considering 49 rules as in Table 1 by using Triangular member-
ship functions. Moreover, a NN-MPC is designed and opti-
mized based on power system model, control horizon and
prediction horizon. Various transient response curves of Afj,
A 1>, AP, jine are obtained and comparative studies have been
done. The following points may be noted (see Fig. 16):

1. From Figs. 11-16 and Table 2, the frequency deviation
responses based on proposed NN-MPC is better than fuzzy
logic control in terms of fast response and small maximum
overshoot.

2. The tie line power is also fast decreased in case of NN-MPC
than FLC.

3. The performance of the NN-MPC is shown in Figs. 11-16
and Table 2 shows that NN-MPC is effective enough to
eliminate the mechanical oscillation after 3 s.

4. The performance of the FLC is shown in Figs. 11-16 and
Table 2 shows that FLC is not effective enough to eliminate
the mechanical oscillation after 16 s.

5. In order to have a better prediction of the future behavior
of the plant, the prediction horizon should be more than the
period of the system.

6. Neural network model predictive control has been shown to
be successful in addressing many large scale non-linear con-
trol problems and therefore is better considering for stabil-
ization of a power system.

9. Conclusions

The scope of this paper is to investigate the potential improve-
ments that can be achieved using neural predictive metho-
dologies for the load frequency control of two area intercon-
nected power system. To validate the effectiveness of the
proposed controller a comparison among the fuzzy logic con-
troller and the proposed NN-MPC controller is obtained. Both
the proposed NN-MPC and FLC with the LFC interconnected
power system is tested through load disturbances. From the
simulations, it is concluded that the proposed controller is
robust and gives good transient response as well as steady-state
performance and it is robust to variations in system parameter
changes. Also from the simulation results it is concluded that
the proposed control approach achieves better control results
than a fuzzy logic control.
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